Water Quality in Snowmelt Dominated Systems: Coupled Hydology and Biogeochemistry

- 1:50-2:10 Bob Parmenter, Valles Caldera National Preserve: Interannual and seasonal differences in stream water quality in the Valles Caldera National Preserve
- 2:10-2:30 Michael Pullin, New Mexico Tech: Overview of water quality research at NMT
- 2:30-2:50 Paul Gabrielsen, New Mexico Tech: Agentbased modeling of hyporheic zone carbon biogeochemistry

New Mexico EPSCoR

Enabling Climate Change Research: Monitoring Environmental Parameters

- 3:50 4:05 Jevon Harding, New Mexico Tech: Applying distributed temperature sensing (DTS) to New Mexico climate change research
- 4:05 4:20 Laura Crossey, University of New Mexico: Tackling the water quality challenge in the new millennium: Using new technology to track geologic salinity sources to surface and ground water
- 4:20 4:35 Asitha Cooray, New Mexico Tech: Colorimetric analysis of iron in natural waters at nanomolar concentrations
- 4:35 4:50 -Scotty Strachan, University of Nevada, Reno: Building Climate Monitoring Infrastructure in Nevada: Cyberinfrastructure meets field science along high elevational transects
- 4:50-5:15 Discussion

Overview of Water Quality Research at New Mexico Tech

Stream DOM Dynamics

Michael Pullin Department of Chemistry New Mexico Tech

- How is water quality coupled to hydrology?
- How do material fluxes vary seasonally and with wet and dry years?
- How do DOC chemical characteristics vary seasonally and with wet and dry years?
- How do algal and terrestrial contributions to DOC amount and chemistry vary seasonally and with wet and dry years?
- What role does the hyporheic zone play in these variations?

- Sporadic sampling misses high flow events
 - Snow melt a difficult time to sample
 - Thunderstorms
 - A hazardous time to sample
 - Difficult to anticipate
 - Probably underestimates the mass of material moving through watersheds
- Sporadic sampling over long time periods difficult to maintain
 - Students are geared towards degree completion
 - Hard to compare wet and dry years

- Develop, build, and deploy a system of chemical analysis instruments to monitor stream water chemistry
 - Operate without human intervention for 30 days
 - Relay data back continuously
 - Respond to remote user instructions
 - Operate in freezing temperatures
 - Operate off grid
- Adapt oceanography-based instruments where possible
- Conduct all analyses in a continuous or inline mode

- Trailer-based monitoring laboratory
- Will monitor:
 - PH, cond., temp., D.O., turb., Chl A
 - Nitrate, phosphate, silica
 - DOC and DIC
 - DOM absorbance and fluorescence spectra
- Automated operation via NI technology
 - CompactRIO computer and I/O devices
 - Labview instrument control and data collection software
 - Compact RIO will collect data from all devices and transmit to a live web page using a cell phone modem
 - Will have the ability to respond to monitored parameters

Instrumentation

- 9. YSI 6920 Sonde -- Stream temperature, DO, pH, turbidity, conductivity
- 10. Satlantic SUNA -- Total Nitrate via UV absorption
- 11. Iron Analyzer -- Dissolved ferrous iron, total dissolved iron
- 12. AutoLab 4 -- Phosphorus (as phosphate), nitrogen (as nitrate), silica
- 13. OI 9120E -- Total organic, total inorganic carbon
- 14. Ocean Optics USB-2000 -- Fluorescence and absorbance

- Dissolved Organic
 - A mixture of nat terrestrial plant sources
 - Found in all nature
 - A complex mixtu concentration
 - Not possible to c structures

:e from)nous)

ical

New Mexico EPSCor

FIGURE 6-4 Three proposed average structural models of Suwannee River fulvic acid (from Leenheer et al., 1994).

- Typically studied by measuring bulk properties and/or property distributions
 - Example: Molecular Weight Distribution
- Typically measured by an HPLC method
- Difficult to automate in the field

Effects of Molecular Weight on NOM Properties and Reactivity

FIGURE 1. Effects of molecular weight on NOM properties and behavior, assuming consistent chemical composition across the MW range.

- Spectroscopic measurements of DOM monitored in our trailer
- UV-Vis light absorbance
 - Light energy removed by the DOM as a function of wavelength (200 - 600 nm)
 - Depends on both amount and character of the DOM
 - Can factor out the variation in amount by ratioing to DOC concentration
 - Absorbance at specific wavelengths correlated to
 - Aromatic character of the DOM
 - Molecular weight
 - Chlorine disinfection byproducts

UV-Vis light absorbance

- Can also examine the spectral shape, the distribution of absorbance vs wavelength
- Changes in spectral shape correlated with biological and photochemical changes in DOM composition

Fluorescence

- Light emitted when DOM that is electronically excited by UV/Vis light returns to the ground state
- Highly sensitive to chemical structure
- Has been used to understand changes in DOM origin and composition

Fluorescence

- McKnight and coworkers
 - Fluorescence Index Relative amounts of allochthonous and autochthonous DOM
 - Redox index Is the DOM originating from oxic or reducing environments?
- Stedmon and coworkers
 - PARAFAC use Factor Analysis to determine spectral components that account for the variation in DOM fluorescence in time or space
 - Identified spectral components include those that correlate to autochthonous and autochthonous DOM sources
 - Requires large and 3D datasets

Instrument measures both absorbance and fluorescence simultaneously every 2-4 min.

Aqualog

New Mexico EPSCoR

- How is water quality coupled to hydrology?
- How do material fluxes vary seasonally and with wet and dry years?

Other projects

Development of water quality monitoring instruments

- Iron(II)/Iron(III)
- Ammonia/amino acids
- Low cost water quality sondes (pH, cond., O₂, temp, etc)
- Collaboration with Diné College
 - Marnie Carroll
 - Rachel Clements and Katrina Koski
 - NM EPSCoR Seed Grant to Diné College
 - Development of an educational watershed system of water quality and amount sensors that can be operated and configured by faculty and students

