Teachers and Students on Climate Change Science Education: 7<sup>th</sup>-12<sup>th</sup> grade Classroom Observations of Inquiry-based lessons in Clark County School District

> Aubrey M. Shirk Ph.D. Candidate UNLV Geoscience Dept. 4/7/2011 NSF EPSCoR Tri-State Consortium











### • • • • • • • • • • • •

### Lesson Development

- Earth & Space Science Unifiying Concept A → Scientific Inquiry Standards
  - (6<sup>th</sup>-8<sup>th</sup>) Understand the relationship between Earth's atmosphere, topography, weather and climate. (Sun radiation, water cycle, climatic patterns, atmosphere composition, difference between climate and weather)
  - (9<sup>th</sup>-12<sup>th</sup>) Understand heat and energy transfer in and out of the atmosphere and influence weather and climate. (Earth's atmosphere past and present, greenhouse effect, heat transfer through convection and radiation)

## Inquiry learning

• "Tell me and I forget, show me and I remember, involve me and I understand."

Observe, collect data, & confer info

**Question & connect ideas** 

Synthesize info & draw conclusions

Communicate results & Develop Problem Solving Skills!

### Lesson Plans

### Group 1

 Volcanoes changing global climates

 Calculating your carbon footprint: embracing "going-green"

 Plate tectonics and its relation to climate change

Measuring the Urban Heat Island Effect

 Modeling carbon consumption and GHG Emissions

 Creative writing and climate change: Be proactive

### Group 2

Packrat Middens: Evidence for climate change in the fossil record

 Tracking and graphing CO2 through time

Leaf margins as climate indicators: Past and Present

Moving day: How does climate affect plant and animal distribution

 Stable isotopes as proxies for paleoclimate

Natural disasters: Volcanoes
effecting climate



# Teachers creating lesson plans







# Lesson Plans







#### . . . . . . . . . . . .

## **Classroom Observations**

- Timing based on when lesson falls into standard (mostly)
  - Activity follows an introduction, field trip, or pretest. Various teaching tools: smartboard, pictures, videos, computers
  - Teachers are not assessed by observations
    - Inquiry-based lessons produce higher level of interest in climate change topics. Assessments → students performed well on climate change activities and remembered content longer

### Students working on lessons

















#### • • • • • • • • • • • •

### **Student Understanding**

### Teaching as a Research project

### Graph of Results of Pre and Post Tests

Questions 1 – 10: Fossils, Geologic Time, and Climate Pretest – 121 students; Posttest – 118 students



![](_page_12_Picture_6.jpeg)

## **Future Direction of Activities**

- Summer Institute 2011: Cycling back to water resources & sustainability (Group 2)
  - Summer Institute 2012: Disturbance and Ecological Change (Group 3)

![](_page_13_Picture_5.jpeg)

### • • • • • • • • • • • •

### Thank You

- NSF EPSCoR
  - Paul Buck
  - Larry Rudd
  - Juan McAlister
  - CCSD Teachers and Students

![](_page_14_Picture_7.jpeg)